Nonstandard Functional Interpretations and Categorical Models
نویسندگان
چکیده
Recently, the second author, Briseid and Safarik introduced nonstandard Dialectica, a functional interpretation that is capable of eliminating instances of familiar principles of nonstandard arithmetic including overspill, underspill, and generalisations to higher types from proofs. We show that, under few metatheoretical assumptions, the properties of this interpretation are mirrored by first order logic in a constructive sheaf model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren. In doing so, we also draw some new connections between nonstandard principles, and principles that are rejected by strict constructivism. Furthermore, we introduce a variant of the Diller-Nahm interpretion with two different kinds of quantifiers (with and without computational meaning), similar to Hernest’s light Dialectica interpretation, and show that one can obtain nonstandard Dialectica from this by weakening the computational content of the existential quantifiers – a process we call herbrandisation. We also define a constructive sheaf model mirroring this new functional interpretation and show that the process of herbrandisation has a clear meaning in terms of these sheaf models.
منابع مشابه
A functional interpretation for nonstandard arithmetic
We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Gödel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of E-HA and E-PA, strengthening earlier results by M...
متن کاملInterpreting weak Kőnig's lemma in theories of nonstandard arithmetic
We show how to interpret weak König’s lemma in some recently defined theories of nonstandard arithmetic in all finite types. Two types of interpretations are described, with very different verifications. The celebrated conservation result of Harvey Friedman about weak König’s lemma can be proved using these interpretations. We also address some issues concerning the collecting of witnesses in h...
متن کاملDialectica Interpretations A Categorical Analysis
The work presented in this thesis is a contribution to the area of type theory and semantics for programming languages in that we develop and study new models for type theories and programming logics. It is also a contribution to the area of logic in computer science, in that our categorical analysis provides us with new insights into functional interpretations. Functional interpretations have ...
متن کاملNonstandard Interpretations of Probabilistic Programs for Efficient Inference
Probabilistic programming languages allow modelers to specify a stochastic process using syntax that resembles modern programming languages. Because the program is in machine-readable format, a variety of techniques from compiler design and program analysis can be used to examine the structure of the distribution represented by the probabilistic program. We show how nonstandard interpretations ...
متن کاملQuantum and Classical Structures in Nondeterminstic Computation
In categorical quantum mechanics, classical structures characterize the classical interfaces of quantum resources on one hand, while on the other hand giving rise to some quantum phenomena. In the standard Hilbert space model of quantum theories, classical structures over a space correspond to its orthonormal bases. In the present paper, we show that classical structures in the category of rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Notre Dame Journal of Formal Logic
دوره 58 شماره
صفحات -
تاریخ انتشار 2017